domingo, 3 de octubre de 2010

Tarjeta madre

ELEMENTOS DE LA TARJETA MADRE:

*RANURA PCI
*RANURA AGP
*PUERTO JOYSTIK
*CONECTOR MEMORIA DDR 266
*BATERIA
*PUERTO PARALELO
*USB
*ZOCALO CPU
*ATX
*CONECTOR VENTILADOR
*RANURA CNR

*TARJETA MADRE*

 La tarjeta madre es el componente principal de un computador personal. Debido a que todos los demás grupos de componentes y dispositivos periféricos son controlados a través de la misma.
La tarjeta madre es el componente más importante de un computador, ya que en él se integran y coordinan todos los demás elementos que permiten su adecuado funcionamiento. De este modo, una tarjeta madre se comporta como aquel dispositivo que opera como la plataforma o circuito principal de una computadora.

placa base


*RANURA PCI*


PCI (Peripheral Component Interconnect) Es un estándar abierto desarrollado por Intel en tiempos del 486. Permite interconectar tarjetas de vídeo, audio, adaptadores de red y otros muchos periféricos con la placa base. El estándar PCI 2.3 llega a manejar 32 bits a 33/66MHz con tasas de transferencia de datos de 133MB/s y 266MB/s respectivamente. No obstante y hoy en día Intel impulsa decididamente el estándar PCI express, que en su versión x16 y funcionando en modo dual proporciona una tasa de transferencia de datos de 8GB/s, ni más ni menos que 30 veces más que PCI 2.3.La primera ranura PCI se utilizaba para el adaptador gráfico,pero se sustituyó por la ranura AGP específicamente diseñada para esta tarea. AGP (Accelerated Graphics Port) es un estándar introducido por Intel en 1996 y en su versión 8x puede sincronizar con frecuencias de bus de 533MHz y ofrecer tasas de transferencia de 2GB/s.
HISTORIA:

AUTO CONFIGURACION: El PCI tiene 2 espacios de dirección separados de 32-bit y 64-bit correspondientes a la memoria y puerto de dirección de entrada/salida de la familia de procesadores de X86. El direccionamiento es asignado por el software. Un tercer espacio de dirección llamado PCI Configuration Space, el cual utiliza un esquema de direccionamiento corregido que permite al software determinar la cantidad de memoria y espacio de direcciones entrada/salida necesitado por cada dispositivo. Cada dispositivo que conectas puede solicitar hasta seis áreas de espacio de memoria o espacios de puerto entrada/salida a través de su registro de espacio de configuración.
En el típico sistema el
Firmware (o sistema operativo) consulta todos los PCI al inicio (vía espacio configuración PCI) para averiguar que dispositivos están presentes y que recursos y dice a cada dispositivo cual es su alojamiento. El espacio de configuración de PCI también contiene una pequeña cantidad de información de cada dispositivo el cual, ayuda al sistema operativo a elegir sus drivers o al menos tener un diálogo acerca de la configuración del sistema.
Los dispositivos pueden tener una
ROM que contiene códigos ejecutables para los x86 o procesadores PA-RISC, un driver Open Firmware o un driver EFI. Estos son típicamente necesarios para dispositivos usados durante el inicio del sistema, antes de que sus drivers sean cargados por el sistema operativo.
Además son PCI Latency Timers que son un mecanismo para el dispositivo del PCI Bus-mastering para compartir el bus PCI de manera más justa. Donde ‘justa’ en este caso significa que los dispositivos no usaron grandes porciones del ancho de banda del bus PCI disponible, que otros no sean capaces e conseguir y necesarios para el trabajo. Nota, esto no aplica al PCIE.
El modo de funcionamiento de esto es porque cada dispositivo PCI puede operar en modo bus-master que es requerido para implementar un reloj, llamado reloj de latencia que limita el tiempo que cada dispositivo puede ocupar el bus PCI. Cuando el contador alcanza el 0 el dispositivo es solicitado para abandonar el bus. Si no hay ningún otro dispositivo esperando la propiedad del bus puede simplemente volver a obtenerlo y transferir más datos.
Hay una herramienta de latencia de PCI disponible. Puedes usar un motor de búsqueda para la última versión. Esta herramienta podrá cambiar/establecer la latencia para cualquier PCI.


*RANURA AGP*

AGP significa primeramente Advanced Graphic Port, o puerto para graficos avanzados o de ultima generacion, este tipo de ranuras o slots, estan unicamente disponibles en las tarjetas madres ATX o mas modernas, normalmente de color café, fueron diseñados con el fin de explotar el potencial de las PC en el mercado de los videojuegos de ultima generacion 3D(entre 98 y 2003), tecnologia desarrollada unicamente para video, actualmente desplazado por la tecnologia de PCI Express.
El puerto AGP se utiliza exclusivamente para conectar tarjetas gráficas, y debido a su arquitectura sólo puede haber una ranura. Dicha ranura mide unos 8 cm y se encuentra a un lado de las ranuras PCI.
A partir de 2006, el uso del puerto AGP ha ido disminuyendo con la aparición de una nueva evolución conocida como
PCI-Express, que proporciona mayores prestaciones en cuanto a frecuencia y ancho de banda. Así, los principales fabricantes de tarjetas gráficas, como ATI y nVIDIA, han ido presentando cada vez menos productos para este puerto.

CARACTERISTICAS GENERALES DE LA RANURA AGP:


  • AGP se considera una ranura de expansión, pero no está dentro de la categoría sino mas bien de un puerto.

  • Es una ranura que ocupa muy poco espacio en la tarjeta principal (Motherboard) mide apenas 8 cm. de largo.

  • No está conectado con las ranuras de expansión, por lo que no comparte recursos y agiliza su función.

  • Tiene la capacidad de acceder de manera directa al Chipset (dispositivo que adecua la velocidad de los microprocesadores con las tarjetas) y por lo tanto consigue mayor rendimiento.

  • Integra un seguro que permite una mejor fijación de la tarjeta aceleradora de gráficos en la ranura.

  • El bus AGP se conecta directamente al FSB ("Front Side Bus") del microprocesador y utiliza la misma frecuencia, con un ancho de banda más elevado.

  • Integra una capacidad de datos de 32 bits.

  • Tiene una velocidad de transferencia de 267 Megabytes/s (Mb/s) hasta 2000 respectivamente.

  • Cuentan con una velocidad interna de trabajo de 66 MHz.

  • Hay varias versiones de esta ranura (1X, 2X, 4X y 8X).

  • Cuenta con una función llamada DMA ("Direct Memory Access") lo cuál permite trabajar de manera directa con los dispositivos y la memoria RAM sin que intervenga el microprocesador.
Tarjetas para insertar en la ranura AGP:
     Las tarjetas diseñadas para la ranura AGP son exclusivamente las tarjetas aceleradoras de gráficos.


El trabajo sobre los PCI empezó en el laboratorio Intel en 1990 situado en Atlacomulco, Mexico. PCI1.O el cual fue solamente una especificación a nivel de componentes fue lanzado el 22 de junio de 1992.El PCI 2.O fue el primero en establecer el estándar para el conector y el slot de la placa base, fue lanzado en 1993. El PCI 2.1 se lanzo al mercado el 1 de junio de 1995.
PCI fue inmediatamente puesto al uso de los servidores reemplazando MCA y EISA como opción al bus de expansión .En PC fue más lento en reemplazar al VESA Local Bus y no ganó la suficiente penetración en el mercado hasta después del 1994 con la segunda generación de los Pentium. Para 1996 el VESA se extinguió y las compañías reemplazaron hasta en los computadores 80486. Apple adoptó el PCI para el Power Macintosh (reemplazando al NuBus) a mediados de 1995 y el Performa (reemplazando a LC PDS) a mediados de 1996.
Nuevas versiones PCI añadieron características y mejoras en el rendimiento incluyendo un estándar a 66MHz 3.3V y otro de 133MHz llamados PCI-X. Ambos PCI-X1.0b y PCI-X2.0 son compatibles con sus predecesores. Con la introducción de la versión serial PCI Express en el 2004, los fabricantes de placas base van incluyendo cada vez menos ranuras PCI a favor del nuevo estándar, aunque todavía es común ver ambas interfaces implementadas.

*PUERTO JOYSTIK*

es un dispositivo de control de dos o tres ejes que se usa desde una computadora o videoconsola hasta un transbordador espacial o los aviones de caza, pasando por grúas.
Se suele diferenciar entre joysticks digitales (que leen cuatro interruptores encendido/apagado en cruceta situada en la base más sus combinaciones y los botones de acción) y joysticks analógicos (que usan potenciómetros para leer continuamente el estado de cada eje, y además de botones de acción pueden incorporar controles deslizantes), siendo estos últimos más precisos.

:El puerto de joystick esta diseñado como una interface con dos joysticks analógicos. Cada joystick dispone de dos botones. El puerto de joystick no suele estar integrado como un componente de la placa base. Este puerto suele estar implementado en targetas del tipo multi-I/O o en targetas de sonido. El conector del puerto permite la conexión de dos joystick a la vez. Es muy simple saber si el puerto de joystick esta disponible en nuestro PC. Es el único conector de 15 pines que podemos encontrar en el panel de atras de nuestro ordenador.
HISTORIA:

Los joystick se utilizaban originalmente para controlar los alerones y elevadores de una aeronave. El nombre joystick parece deberse al piloto francés de principios del siglo XX Robert Esnault-Pelterie.[1] También se atribuye a los pilotos Robert Loraine y James Henry Joyce. El joystick en sí mismo estaba presente en los primeros aviones, aunque su origen mecánico sigue siendo incierto.[2]
El primer joystick eléctrico de dos ejes probablemente fue inventado en 1944 en Alemania. Se desarrolló para controlar la bomba guiada Henschel Hs 293. El joystick era utilizado por el operador para dirigir el misil hacia su blanco por control de radio. El joystick constaba de interruptores encendido/apagado en lugar de sensores analógicos, por lo que se le podría considerar el primer joystick digital. La señal se transmitía al misil mediante un cable fino.

*CONECTOR DE MEMEORIA DDR 266*
DDR (Double Data Rate) significa doble tasa de transferencia de datos en español. Son módulos de memoria RAM compuestos por memorias síncronas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDR soportan una capacidad máxima de 1 nibble.
Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un Front Side Bus (FSB) de 64 bits de datos y frecuencias de reloj desde 200 a 400 MHz.
Este sistema funciona debido a que dentro de las memorias hay un pequeño buffer que es el que guarda la información para luego transmitirla fuera del modulo de memoria, este buffer en el caso de la DDR convencional trabajaba tomando los 2 bits para transmitirlos en 1 sólo ciclo, lo que aumenta la frecuencia final. En las DDR2, el buffer almacena 4 bits para luego enviarlos, lo que a su vez redobla la frecuencia nominal sin necesidad de aumentar la frecuencia real de los módulos de memoria.
Archivo:DDRSDRAM400-1GB.jpg

*BATERIA*

la pila o bateria de la trajeta madre dura aproximadamente unos 4 o 5 años y aveces mas, te das cuenta de que se agoto por los sintomas que presenta el computador, los tipicos son cuando inicias te envia una ventana de la bios ya que sin la bateria pierde la confuguracion debiendo configurarse cada vez que inicias.Batería: básicamente se usa para mantener el reloj interno de la computadora actualizado es decir, mantener la fecha y la hora correctas. También contribuye para conservar y mantener la configuración del equipo cuando se apaga la computadora o se corta la corriente eléctrica, ya que envía pequeñas cantidades de energía al chip CMOS (Complementary Metal Oxide Semiconductor) que tiene las instrucciones necesarias para arrancar la computadora.
La batería es el componente encargado de suministrar energía a la memoria CMOS que guarda los datos de la configuración del Setup.
La memoria CMOS de la BIOS tiene como particularidad el bajo consumo de corriente por lo que una simple batería puede suministrarle energía suficiente para su funcionamiento normal.

*PUERTO PARALELO*

Un puerto paralelo es una interfaz entre una computadora y un periférico, cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
El puerto paralelo (protocolo centronics) se utiliza generalmente para manejar impresoras. Sin embargo, dado que este puerto tiene un conjunto de entradas y salidas digitales, se puede emplear para hacer prácticas experimentales de lectura de datos y control de dispositivos. Esta obra pretende dar a conocer los aspectos más relevantes del puerto paralelo, de modo que se pueda utilizar como una interface de entrada/salida que funcione de modo subordinado a rutinas de software.   Este trabajo surge de la necesidad de una guía para la práctica de la adquisición de datos y control de dispositivos como una alternativa al uso de Controladores Lógicos Programables (PLC) y Tarjetas de Adquisición de Datos (DAC), de modo que se puedan hacer experiencias con sistemas en Tiempo-Real.

*USB*

Una memoria USB (Universal Serial Bus; en inglés pendrive, USB flash drive) es un dispositivo de almacenamiento masivo que utiliza memoria flash para guardar la información que puede requerir. Se conecta mediante un puerto USB y la información que a este se le introduzca puede ser modificada millones de veces durante su vida útil. Estas memorias son resistentes a los rasguños (externos), al polvo, y algunos al agua —que han afectado a las formas previas de almacenamiento portátil—, como los disquetes, discos compactos y los DVD. En España son conocidas popularmente como pinchos o lápices, en otros países como Colombia, Honduras, México y Guatemala son conocidas como memorias y en Venezuela son mayormente llamadas pendrives.
Estas memorias se han convertido en el sistema de almacenamiento y transporte personal de datos más utilizado, desplazando en este uso a los tradicionales disquetes, y a los CD. Se pueden encontrar en el mercado fácilmente memorias con capacidad que vas desde 1GB hasta 256 GB; aunque resultan inconvenientes a partir de los 64GB por su elevado costo. Esto supone, como mínimo, el equivalente a 180 CD de 700MB o 91.000 disquetes de 1.44 MB aproximadamente.
Su gran éxito le ha supuesto infinidad de denominaciones populares relacionadas con su pequeño tamaño y las diversas formas de presentación, sin que ninguna haya podido destacar entre todas ellas. El calificativo USB o el propio contexto permite identificar fácilmente el dispositivo informático al que se refiere; aunque siendo un poco estrictos en cuanto al concepto, USB unicamente se refiere al puerto de conexión
Las memorias USB de gran capacidad, al igual que los discos duros o grabadoras de CD/DVD son un medio fácil para realizar una copia de seguridad, por ejemplo. Hay grabadoras y lectores de CD-ROM, DVD, disquetera o Zip que se conectan por USB.
Además, en la actualidad, existen equipos de audio con entradas USB a los cuales podemos conectar nuestro pendrive y reproducir la música contenida en el mismo.

Archivo:USB Flash Drive and Card Reader.jpg
*ZOCALO CPU*

El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las consolas de videojuegos.
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).
Funcionamiento:
El zócalo va soldado sobre la placa base de manera que tiene conexión eléctrica con los circuitos del circuito impreso. El procesador se monta de acuerdo a unos puntos de guía (borde de plástico, indicadores gráficos, pines o agujeros faltantes) de manera que cada pin o contacto quede alineado con el respectivo punto del zócalo. Alrededor del área del zócalo, se definen espacios libres, se instalan elementos de sujeción y agujeros, que permiten la instalación de dispositivos de disipación de calor, de manera que el procesador quede entre el zócalo y esos disipadores.
En los últimos años el número de pines ha aumentado de manera substancial debido al aumento en el consumo de energía y a la reducción de voltaje de operación. En los últimos 15 años, los procesadores han pasado de voltajes de 5 V a algo más de 1 V y de potencias de 20 vatios, a un promedio de 80 vatios.
Para trasmitir la misma potencia a un voltaje menor, deben llegar mas amperios al procesador lo que requiere conductores más anchos o su equivalente: mas pines dedicados a la alimentación. No es extraño encontrar procesadores que requieren de 80 a 120 amperios de corriente para funcionar cuando están a plena carga, lo que resulta en cientos de pines dedicados a la alimentación. En un procesador Socket 775, aproximadamente la mitad de contactos son para la corriente de alimentación.
La distribución de funciones de los pines, hace parte de las especificaciones de un zócalo y por lo general cuando hay un cambio substancial en las funciones de los puertos de entrada de un procesador (cambio en los buses o alimentación entre otros), se prefiere la formulación de un nuevo estándar de zócalo, de manera que se evita la instalación de procesadores con tarjetas incompatibles.

*ATX*
El estándar ATX (Advanced Technology Extended) se desarrollo como una evolución del factor de forma[1] de Baby-AT, para mejorar la funcionalidad de los actuales E/S y reducir el costo total del sistema. Este fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el que las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 [2] publicada en 2004.
Una placa ATX tiene un tamaño de 305 mm x 244 mm (12" x 9.6"). Esto permite que en algunas cajas ATX quepan también placas microATX.
Otra de las características de las placas ATX son el tipo de conector a la Fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.

Archivo:ATX Formate.jpg
*CONECTOR VENTILADOR*

 





Ventilador diseado para ser instalado en la ranuras de las carcasas del PC, destinadas a conectores tipo DB25 o formato/tamao similar. Aprovechando este tipo de salidas, se consigue extraer y renovar el aire del interior del PC, reduciendo hasta 20 grados la temperatura interior. Adems puede ser muy til para carcasa externas (torres RAID, cajas externas, ..). Se suministra adems con un bracket metlico (adaptador para ranura de slot de expansin), que permite instalar el ventilador en una ranura de slot de la parte posterior del PC, que lo hace mucho ms verstil. Flujo de aire de 9.5 CFM, velocidad de 4500 rpm, ruido de 21 dBa, voltaje de DC12V, potencia de 0.84W y tamao de 68x60x10.7mm.

*RANURA CNR*

(Elevador de Comunicación y Red) es una ranura de expansión en la placa madre para dispositivos de comunicaciones como módems, tarjetas Lan o USB, al igual que la ranura AMR también es utilizado para dispositivos de audio. Fue introducido en febrero de 2000 por Intel en sus placas para procesadores Pentium y se trataba de un diseño propietario por lo que no se extendió más allá de las placas que incluían los chipsets de Intel.




4 comentarios:

  1. esta bien tu info solo
    que creo que hubiera sido un poco mas efectivo que pudieras poner la definicion y para que sirve cada una de las partes
    suerte!!!

    ResponderEliminar
  2. creo que esta publicacion solo se basa en los elementos,esta bien pero en lo personal me hubiera gustado que espesificara que es la tarjeta madre?,para que sirve? y como se utiliza?
    espero y mi comentario sirva para que complementes tu informacion america!.

    ResponderEliminar
  3. Hola America!
    La investigacion que has realizado, me parece muy bien, de hecho has descrito los elementos que integran la tarjeta madre, definiendo que comportamiento tiene cada uno de ellos y me parece una excelente investigacion, en horabuena, siga mostrando el mejor empeño como lo has hecho hasta ahora!

    ResponderEliminar
  4. america¡¡¡ en lo personal tu investigacion me parece muy buena porque explicas todo sobre la targeta madre y sus elementos espero y sigas asi tambien la exposicion que hisiste fue muy buena te felicito

    ResponderEliminar